Inhibition of choline acetyltransferase and hexobarbitonemetabolizing enzymes by naphthylvinyl pyridine analogues

Certain naphthylvinyl pyridine derivatives inhibit rat brain choline acetyltransferase (ChA) *in vitro* (Smith, Cavallito & Foldes, 1967; Cavallito, Yun & others, 1969). Of these, *trans*-4-(1-naphthylvinyl)pyridine HCl (4-NVP) is the most specific inhibitor of ChA. We have found that 4-NVP markedly potentiates the cholinesterase inhibitor physostigmine, instead of inhibiting its behavioral effects as might be expected (Goldberg, Sledge & others, 1970). On the basis of other drug interaction studies, we suspect that 4-NVP inhibited microsomal drug metabolizing enzymes as well as ChA. The present investigation examines whether 4-NVP, a potent inhibitor, *in vitro*, inhibits ChA *in vivo*, assesses the relative inhibitory effects on the microsomal drug metabolizing system for hexobarbitone, and also evaluates other isomers of NVP against both parameters. For these purposes, *trans*-isomers of 2-(1-naphthylvinyl)pyridine HCl (2-NVP) and 3-(1-naphthylvinyl)pyridine (3-NVP) were prepared and investigated.

ChA inhibition was measured, both *in vivo* and *in vitro*, in mouse brain (male albino, 20 g) according to McCaman & Hunt (1965). The hexobarbitone-metabolizing enzyme system (HMES) was studied *in vitro* using the 10 000 g supernatant fraction of rat liver homogenized in mannitol-sucrose-EDTA (225-75-0.1 mM, pH 7.4). Side-chain oxidation of hexobarbitone was estimated by substrate disappearance (Cooper & Brodie, 1955). Evidence for *in vivo* inhibition of HMES was obtained by measuring sleeping time in mice after hexobarbitone sodium (100 mg/kg, i.p.). Drugs or saline were given 30 min before the barbiturate.

Molar concentrations required to inhibit both enzymes *in vitro* by 50% (I50) were estimated graphically from the means of at least duplicate analyses using several inhibitor concentrations.

All isomers inhibited both enzymes *in vitro* (Table 1), although an I50 value for 3-NVP against ChA could not be obtained. 4-NVP was most potent against both enzymes, and was about 17 times more active against HMES than against ChA. No such correlation was observed with the other analogues. 3-NVP had one-sixth of the activity of 4-NVP on HMES, yet was about 1/100th as active against ChA. Conversely, 2-NVP had about one-half the activity of 4-NVP against ChA, yet was some 20 times weaker as an inhibitor of HMES.

4-NVP produced a dose-dependent inhibition of mouse brain ChA in the dose range of 25.0 to 100.0 mg/kg. Further inhibition was not obtained after higher doses. It also caused an inhibition which persisted for at least 8 h after 200.0 mg/kg with a peak 2 to 4 h after administration (Table 2). At this dose, signs of depression and ataxia were observed. The acute intraperitoneal LD50 for 4-NVP at 24 h was 337 (290-539) mg/kg.

The effects on the duration of hexobarbitone sleep after NVP analogues agree closely with *in vitro* inhibition of HMES (Table 3). With the lowest dose that caused

Table 1.	In vitro inhibition of choline acetyltransferase (ChA) and the hexobarbitone-
	metabolizing enzyme system (HMES). Control preparations had enzyme
	activities equivalent to $9.8 \mu \text{mol/g}$ h ⁻¹ of acetylcholine formed and 91
	μ mol/g protein h ⁻¹ of hexobarbitone metabolized.

Compound	I50–ChA	150–HMES	
4–NVP 3–NVP 2–NVP	3×10^{-5} M (30% at 10 ⁻³ M) 7×10^{-5} M	$5 \times 10^{-6} M$ $3 \times 10^{-5} M$ $1 \times 10^{-4} M$	

Table 2.	In vivo	inhibitior	n of ChA	t by	4-N	VP.	Values	given	are fo	or each	group of
4-8 mice.	Mean	control	activity	of	11.1	± 0.6	(s.e.)	μ mol/ j	g h -1	of ace	tylcholine
	formed	(n = 27)									

Dose (mg/kg, i.p.)	Time of death (h)	% Inhibition of controls \pm s.e.	
12.5 25.0 50.0 100.0 200.0	1 1 1 1 1	$\begin{array}{r} 2\cdot3 \ \pm \ 2\cdot2 \\ 13\cdot1 \ \pm \ 3\cdot6 \\ 35\cdot7 \ \pm \ 5\cdot8 \\ 63\cdot8 \ \pm \ 2\cdot3 \\ 65\cdot4 \ \pm \ 3\cdot1 \end{array}$	
200·0 200·0 200·0 200·0	2 4 8 24	$\begin{array}{c} 81 \cdot 2 \ \pm \ 4 \cdot 6 \\ 83 \cdot 0 \ \pm \ 2 \cdot 7 \\ 58 \cdot 9 \ \pm \ 1 \cdot 1 \\ 0 \cdot 0 \end{array}$	

Table 3.	Effects of NVP analogues on hexobarbitone sleeping time. Mean sleeping
	time (min) for 6 groups of controls (10/group) was 31 ± 5 (s.e.). There
	were 20 mice/drug treatment and a cut-off time of 120 min was used.

Dose		% Control sleeping t	ime
(mg/kg) i.p.	4–NVP	3-NVP	2-NVP
2.5	112	_	
5.0	158*		
10.0	242*	_	
25.0	354*	130	108
50.0		187*	118
100-0	— -	200*	196*

* P < 0.05 compared with controls.

prolongation of sleep, 4-NVP was 10 times more potent than 3-NVP, which in turn was twice as potent as 2-NVP. It seems that hexobarbitone is potentiated *in vivo* by inhibition of its metabolism by NVP analogues. After parenteral administration, NVP analogues seem to be capable of entering the central nervous system where they cause a significant and prolonged inhibition of ChA. The I50 for 4-NVP in mouse brain was identical to that obtained in rat brain by Smith, Cavallito & Foldes (1967). A correlation between inhibition of ChA and HMES is not evident within this series of three compounds.

Department of Pharmacology, Warner-Lambert Research Institute, Morris Plains, New Jersey 07950, U.S.A. M. E. GOLDBERG A. I. SALAMA S. W. BLUM

January 13, 1971

REFERENCES

CAVALLITO, C. J., YUN, H. S., SMITH, J. C. & FOLDES, F. F. (1969). J. mednl Chem., 12, 134-138 COOPER, J. R. & BRODIE, B. B. (1955). J. Pharmac. exp. Ther., 114, 409-417.

GOLDBERG, M. E., SLEDGE, K., ROBICHAUD, R. C. & DUBINSKY, B. (1970). Presented at 7th Cong. Colleg. Intern. Neuro-Psychopharmacol., Prague, Czechoslovakia.

MCCAMAN, R. E. & HUNT, J. M. (1965). J. Neurochem., 12, 253-259.

SMITH, J. C., CAVALLITO, C. J. & FOLDES, F. F. (1967). Biochem. Pharmac., 16, 2438-2441.